

1. Active Recall: Nomenklatur

2. Theorie: Symmetrieelemente und Punktgruppen

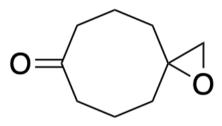
3. Serie 6

4. Feedback

5. Mental Health

- 1. Active Recall: Nomenklatur
- 2. Theorie: Symmetrieelemente und Punktgruppen
- 4. Feedback
- 5. Mental Health

Active Recall: Nomenklatur


• 9-Borabicyclo[3.3.1]nonan

Active Recall: Nomenklatur

• 9-Borabicyclo[3.3.1]nonan

• 1-Oxaspiro[2.7]decan-7-on

4/23

1. Active Recall: Nomenklatur

2. Theorie: Symmetrieelemente und Punktgruppen

4. Feedback

5. Mental Health

Einführung

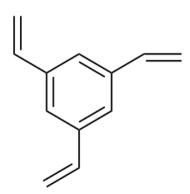
- So wie wir können Autos nach ihrer Farbe sortieren, können wir Moleküle nach ihrer Symmetrie sortieren. Wir sortieren sie nach Ihrer Symmetrie, haben sie die gleiche Symmetrie, kommen sie in die gleiche Punktgruppe
- Diese Moleküle haben alle was gemeinsam, alle haben die gleiche Symmetrie (ja auch das dritte Molekül).
- Ein Molekül hat eine gewisses Symmetrieelemente (synonym mit symmetrieoperation) wenn das nach der Anwendung der Operation genau gleich ist wie vorher. Beachten hier geht es nicht darum, dass man es danach durch Drehung deckungsgleich bekommt, sondern das muss nach der operation schon sein!

Warum ist es wichtig?

Warum ist es wichtig?

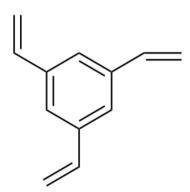
- Vorhersage von Molekülstrukturen
- Vorhersage von spektroskopischen Eigenschaften
- Berechnung von Moleküleigenschaften
- Chemische Reaktionen:
- Kristallographie
- Materialwissenschaften

Warum wir es nicht ganz verstehen

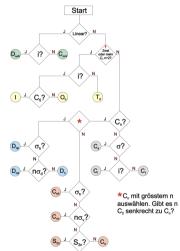

- Divisite with a significant and a day Mathematik, an aniellan and
- Punktgruppen ist ein Konzept aus der Mathematik, spezieller aus der Gruppentheorie.
- In der Definition einer Gruppe muss es eine Operation geben, die nichts macht, daher haben wir die Indentität als Symmetrieoperation.

Symmetireoperationen

Es gibt 5 Symmetrieoperationen:

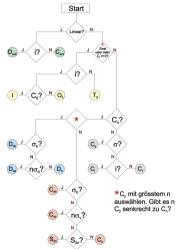

- Indentität (E oder I): Macht nichts mit dem Molekül, also ist es deckungsgleich. Jedes Molekül hat diese Operation
- Drehachse (C_n): Dreht das Molekül um $\frac{360}{n}$ Grad. Also C_2 dreht um 180 Grad. Meistens n nicht höher als 8. Es dreht immer entlang einer Achse!
- Spiegelebene (σ): Spiegelung an einer Ebene. Wird in σ_h , σ_v und manchmal nochh σ_d unterteilt. "h" bedeutet die Ebene ist horizontal zur derjenigen Drehachse mit grösstem n ist. ist sie vertikal zur höchsten Drehachse, ist sie "v". Ist sie werder noch, also liegt schräg, dann "d".
- Drehspiegelachse (S_n): Zuerst wird gedreht und dann senkrecht dazu gespiegelt oder gespiegelt oder senkrecht dazu gedreht. Nur weil es eine C_n und eine σ gibt, heisst es nicht. das es auch eine S_n geben muss. Anders herum gilt die Implikation auch nicht.
- Inversionszentrum (i): Es gibt einen Punkt im Molekül, an dem ihr das ganze Molekül spiegeln könnt.

• Welche Elemente hat es?


10/23

E, C₃, S₃ und σ

• E, 3 C₂, 3 σ, i



† Drehachsen C_m, die in der(den) Hauptdrehachse(n) C_n (n > m) enthalten sind, werden hier nicht gezählt.

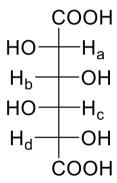
Beispiel 2: Lösung

- E, 3 C₂, 3 σ, i
- D_{2h}

† Drehachsen C_m, die in der{den) Hauptdrehachse(n) C_n (n > m) enthalten sind, werden hier nicht gezählt.

Topizität

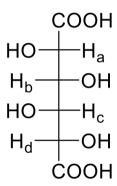
Es gibt 3 Arten and Topizizät:


- Homotop: Durch Drehung ineinander überführbar
- Enantiotop: Durch Drehspiegelung überführbar
- Diasteretop: gleiche Konstitution aber nicht überführbar

Und dann gibt es auch noch den Fall das sie Verschieden sind

Sind Bergiffe für Atome in einem Atom. Man kann nicht nur ein Atome betrachten, sondern muss immer 2 betrachten. Sie sind verschieden wenn die Atome in Frage nicht die gleiche Verbundenheit haben. Dabei zählen nicht nur die direkten Bindungspartener, sondern alle, also die gesamte Knostitution.

FTH zürich


- H_a zu H_b
- $H_a zu H_c$
- H_a zu H_d

15/23

Beispiel: lösung

- H_a zu H_b: Verschieden
- H_b zu H_c: Homotop
- H_a zu H_d: Homotop

1. Active Recall: Nomenklatur

2. Theorie: Symmetrieelemente und Punktgruppen

3. Serie 6

4. Feedback

5. Mental Health

Priorität Serie 6

- 1. 6.2
- 2. 6.3
- 3. 6.4
- 4. 6.1

Tipps Serie 6

- Überlegt euch wieder wie sich die Elektronenwolke verteilt, können Moleküle mit einem inversions Zentrum einen Dipol haben?
- Die Td Punktgruppe steht für tetraedrische Symmetrie, könnte ein CH₃Cl eine solche symmetrie haben?
- 6.3: Zeichnet die Alternativen und schaut ob ihr sie nur mit Rotation ineinander Überführen könnt, oder ob sie Enantiomere sind.
- 6.4: Lonepairs brauche in Realität mehr Platz als eine Einfachbindung. Was passiert mit den Liganden.

1. Active Recall: Nomenklatur

2. Theorie: Symmetrieelemente und Punktgruppen

4. Feedback

5. Mental Health

Feedback

• Bitte füllt wieder das Feedback 🗹 aus damit ich euch besser Unterrichten kann :)

- 1. Active Recall: Nomenklatur
- 2. Theorie: Symmetrieelemente und Punktgruppen
- 4. Feedback
- 5. Mental Health

Mental Health

• Unter diesem Link 🗗 findet ihr Hilfe, falls es euch nicht gut geht.

Vielen Dank für eure Aufmerksamkeit!

Dominik Götz dgoetz@ethz.ch